Derivatives of Automata

Justin Hu
April 21, 2022

Abstract

A method of computing the derivative of any automaton is pre-
sented, based on Brzozowski’s work on derivatives of regular expres-
sions and Might, Darais, and Spiewak’s work on derivatives of context-
free grammars. Equivalence with Brzozowski’s and Might et al.’s
derivatives are proven, but practical applications depend on other
means of constructing automata.

1 Introduction

When computers read data, the data is often read as a flat sequence of
bytes. Frequently, those bytes need to be converted into a structured form,
like a tree, in a process called parsing. A similar activity would be diagram-
ming sentences, where a sequence of words is converted into a grammatical
tree. Indeed, many terms used in describing the parsing of computer data
are taken from linguistics, mostly because of the linguist Noam Chomsky.

Often, a string gets parsed to determine whether or not it’s an accept-
able input. A set of acceptable strings is called a formal language, and it can
be described by a formal grammar. Formal languages are mathematical ob-
jects; while the set of possible English sentences is up for debate, whether
or not a string is in a formal language can be rigorously proven. One way of
proving a string is in a formal language is to show that it can be parsed us-
ing the formal grammar describing the language. As such, given some input
(in the form of a string), to determine if it’s an acceptable input or not, first
construct a formal language that contains all acceptable inputs, construct a
formal grammar from that formal language, and parse the input using the
formal grammar. If the parse succeeds, then the input is acceptable. If the
parse fails, then the input is unacceptable.

One question remains — how to parse a string using a formal grammar?
For a formal language described by a regular expression, there exist algo-
rithms to determine if a string matches (is parsed by) any regular expres-
sion. For a formal language described by certain kinds of context-free gram-
mar, there also exist algorithms to determine if a string matches. A more
general tool, however, is recognition using derivatives [4]. Taking the deriva-
tive of a language with respect to some character constructs a new language.
The new language is constructed from the original language by taking those
strings in the original language starting with the character we are taking the
derivative with respect to, then removing the first character of those strings.
If you repeatedly take the derivative with respect to subsequent characters
in the string, and end up with a language that can accept the empty string,
then the string is in the original language.

Existing work by Brzozowski [1] and Might et al. [4] give algorithms for
recognition using derivatives of regular expressions and context-free gram-
mars, respectively. Regular languages and context-free languages, however,
have limitations. An example would be the language consisting of any strings
containing the character a some number of times followed by an equal num-
ber of the character b and then followed by an equal number of the charac-
ter c. This and similar languages cannot be defined using regular expres-
sions or context-free grammars, and so, cannot be recognized using existing
methods of computing derivatives. This is a limitation this thesis seeks to
address.

1.1 Formal Languages and Grammars

Chomsky [2] defines a formal language as a set of strings. A formal lan-
guage can be described by a formal grammar. A formal grammar is defined
as a tuple of:

e N, the set of nonterminal symbols
e ¥, the set of terminal symbols; XN N = ()

e P, the set of rules, where a rule is of the form (X U N)*N(X U N)* —
(XUN)*

e s, the start symbol; s € N

For some grammar G, the relation = (G derives in one step) is defined
as T =¢ y = Ju,v,p,q, € (BUN)" 2z =upv Ap - q € PNy = uqu.

In other words, a string of symbols x, composed of substrings u followed by
p followed by v derives a second string of symbols y, composed of substrings
u followed by ¢ followed by v if there is a rule from p to ¢ in the grammar.
The reflexive transitive closure of the = relation starting from s defines the
set of strings described by the formal grammar.

1.2 Derivatives of Formal Languages

The derivative, D.(L), of a formal language L with respect to some char-
acter ¢ is described by Might et al. [4] as follows:

D.(L)={w | cw e L}

Informally, to construct the derivative of a language, take all of the strings
in the language, keep only those whose first character is the character the
derivative is taken with respect to, and remove the first character from each
string. Note that the derivative of a formal language is another formal lan-
guage.

Derivatives are useful because of their properties when chained [4]:

VueX* uels (u=eNeeG)V (IceX,reX . cr=uAr € D.(G))

Informally, for any string s with characters a,b,c,...,z,y, z and gram-
mar G, if D,(Dy(D,(...D.(Dy(D,(G)))))) contains the empty string, then
s is in G. Repeated computation of the derivative is a method of checking
a string’s membership in a grammar incrementally, instead of computing
whether or not the grammar can derive the string in question from the start-
ing symbol.

2 Previous Work

Brzozowski [1] describes derivatives of regular expressions, describing a
direct method for testing membership of a string in any regular language.
Brzozowski specifies the process of computing a derivative by giving recur-
sive derivation rules operating on the syntax of a regular grammar:

e D.(c) = € (the derivative with respect to some character ¢ of a regu-
lar expression expecting just c is the regular expression expecting the
empty string)

e D.(€) = 0 (the derivative of a regular expression expecting the empty
string is the regular expression that always rejects)

e D.(0) =) (the derivative of a regular expression that always rejects is
one that always rejects)

o Vr € X. x#c= D.x)=10 (the derivative of any single that isn’t ¢ is
also the regular expression that always rejects)

e D.(Px) = D.(P)Px (the derivative of a repetition is the derivative of
the repeated expression followed by the original repetition)

e D.(PQ)=D.P)Q | o(P)D.Q) (the derivative of concatenation is the
derivative of the first part followed by the second part alternated with
the derivative of the second part, but only if the first part accepts the
empty string)

e D.(P| Q) = D.P) | D.(Q) (the derivative distributes over alterna-
tion)

The function 6(P) is defined as

€ e€P
6(P):{@ EZP

The function 6(P) is used to special-case situations where some subex-
pression in an operator might already accept the empty string.

Might et al. [4] later describe derivatives of context-free languages, again
describing a direct method for testing membership of a string in any context-
free language. Might et al. also specify the process of efficiently computing
a derivative by adding memoization and laziness rules to allow Brzozowski’s
rules to operate on context-free grammars. Might et al. note that the deriva-
tive of a context-free language is almost identical to that of a regular lan-
guage because a context-free grammar can be viewed as a recursive regular
grammar.

3 Derivatives of Automata

It is well-known that formal languages have corresponding nondetermin-
istic automata [3]. For example, the regular languages correspond to non-
deterministic finite automata, and the context-free languages correspond to

nondeterministic push-down automata. Furthermore, the context-sensitive
languages correspond to nondeterministic linear bounded automata, and un-
restricted languages correspond to Turing machines. The common thread
through all of these automata is that they have a finite number of states, a
set of rules for transitioning between states based on input symbols, and a
set of rules for manipulating the machine’s context while transitioning be-
tween states.

A nondeterministic automaton is described as a tuple of:

Q, the finite, non-empty set of states

I, the finite set of accepting states; F' C @)

Y2, the finite set of symbols allowed in the input

C, the possibly infinite, non-empty set of possible contexts

d, the transition relation; 0 : Q@ x X x C' — P(Q x C)

e S, the set of tuples of starting states; S C @) x C'

The set of starting states is rendered unnecessary if an e-transition is al-
lowed from the starting state. Representing that transition as a set of start-
ing states and contexts allows for a more direct implementation of this algo-
rithm.

The definition of contexts, and what changes to the context are allowed
within the transition relation determine the power of the language in ques-
tion. For example, if the context has only one value, thus carrying no mean-
ingful information, the automaton described is equivalent in power to a non-
deterministic finite automaton.

Informally, automaton accepts a string if, starting from any of the start-
ing states and transitioning through the transition relation once per charac-
ter of the string, in order, there is any state from the set of accepting states
in the states reached by the transition relation. To describe this more for-
mally requires a multi-transition function.

For some fixed automaton, let 0* : @ x ¥* x C — P(Q x C) be the
multi-transition function.

{(g,0)} s=¢

e {Uwq', S1.¢) | (¢.¢) € 6(q.[0].0)} otherwise

The multi-transition function describes all of the states reachable by
transitioning along the characters in the given string, one at a time, from
some fixed starting state and context. If the string is empty, stop - the cur-
rent state and context is the only reachable one. If the string is not empty,
then for every state and context reachable by transitioning down the first
character of the string, union together the states reachable by transitioning
along the characters in the rest of the string.

Finally, for some fixed automaton, let A be the acceptance predicate on
*.

A(s)=3f e F,ce C. (f,c) € U{é*(q,s,c) | (g,¢) € S}

In other words, the automaton accepts a string if and only if the set
of states reachable from all of the starting states and contexts and multi-
transitioning from the string contains at least one final state.

3.1 Definition of the Derivative

Previously, methods for computing derivatives based on formal gram-
mars were introduced. A method for computing derivatives based on au-
tomata also exist. The derivative of the automaton (Q, F, %, C, 4, S) with
respect to some symbol ¢ is another automaton, (Q, F, %, C,§,S") such that
S" = U{d(q,0,¢) | (g,¢) € S}. That is, the derivative of the automaton is
the same as the original automaton, but with different starting states. The
starting states of the new automaton are those states and contexts reached
by transitioning once using the transition function from the starting states
of the original automaton. As an aside, if the resulting automaton has an
empty set for its starting states and contexts, then the automaton automati-
cally rejects any and all inputs immediately.

3.2 Equivalence with Generalized Derivatives

A method for computing derivatives of automata has been given, but
does it really do what it claims? In order to compare automata, formal lan-
guages, and grammars, define an automaton, language, or grammar to be
equal to another automaton, language, or grammar if the same set of strings
is accepted by both.

Theorem 1. Let D, : Language — Language be the derivative of a language
as described in section 1.2.

Let A, : Automaton — Automaton be the derivative of an automaton as
described in section 3.1.

Let L be any context-free language, and let Automaton(L) be its corre-
sponding automaton.

Then:

D.(L) = A.(Automaton(L))

Proof. 1. By the definition of D.(L), it suffices to prove for any arbitrary
w € X* cw € L if and only if w € A.(Automaton(L))

2. To prove the bidirectional implication, it suffices to prove the implication
in both directions - that is, assuming some w € X*, cw € L implies w €
A (Automaton(L)) and w € A.(Automaton(L)) implies cw € L
2.1. To prove the implication in the forwards direction, it suffices to as-

sume the antecedent cw € L and show w € A.(Automaton(L))

2.1.1. Decompose the automaton Automaton(L) into its components
(Q, F,%,C,4,8), and decompose the derived automaton A.(Automaton(L))
into its components (Q, F, %, C, §,S")

2.1.2. We know cw € Automaton(L) since cw € L and Automaton(L)
and L accept the same strings by definition

2.1.3. So by the definition of an automaton accepting a string, there
exists some state and context (g, d) in the starting states such
that (¢/,d') € 6(q,c,d) and 3f € F,cy € C. (f,cp) € 6* (¢, w,d')

2.1.4. And if (¢/,d') € 8" and 3f € F,cy € C. (f,¢f) € 6*(¢',w,d’) then
w € Automaton(L) by the definition of automaton acceptance

2.1.5. And we know (¢',d’) € S" by the definition of A.(Automaton(L))
and 2.1.2

2.1.6. Thus w € A.(Automaton(L))

2.2. To prove the implication in the backwards direction, it suffices again
to assume the antecedent w € A, (Automaton(L)) and show cw € L

2.2.1. Again decompose the automaton Automaton(L) into its compo-
nents (Q, F,%,C,§,S), and decompose the derived automaton
A.(Automaton(L)) into its components (@, F, >, C, 9, 5")

2.2.2. We know there exists some (q,c,d) € @QxXxC and some (¢',d’) €
S" such that (¢/,d’) € d(q,c,d) and (¢,d) € S by the definition of
the derivative.

2.23. And if (¢/,d") € 5, w € A.(Automaton(L)), (¢',d) € d(q,c,d),
and (q,d) € S then cw € Automaton(L) by definition of automa-
ton acceptance

2.2.4. And we do know all of that, so cw € L since cw € Automaton(L)A

L = Automaton(L)
2.25. Thus cw € L

As a corollary to Theorem 1, since Brzozowski’s derivative and Might
et al.’s derivative both compute the derivative as defined above [1, 4], the
automaton view of the derivative computes the exact same thing as Brzo-
zowski’s derivative and Might et al’s derivative. That is, the set of strings
accepted by the derivative computed on the automaton of a regular expres-
sion is the same set of strings accepted by the derivative computed using
Brzozowski’s rules, and likewise, the set of strings accepted by the derivative
computed on the automaton of a context-free grammar is the same set of
strings accepted by the derivative computed using Might et al.’s rules.

4 Conclusion

Automata can be used to compute the derivative of an arbitrary lan-
guage or grammar - convert it into its corresponding automaton, and then
use the above constructive definition of the derivative on an automaton to
compute the automaton describing the derivative of the language, and then
convert the automaton back into a language or grammar. Unlike Might et
al., this process does not necessarily lead to faster computation of string
membership in a language; consider the automaton corresponding to a context-
sensitive language. One known conversion is to have the automaton nonde-
terministically derive strings from the starting string, and accept only if the
derived string is equal to the input. This automaton, however, does very lit-
tle computation as it consumes its input; it does all of its computation once
it has seen all of its input, and needs to nondeterminstically derive strings
from the starting string. Computing the derivative of such an automaton re-
sults in another automaton that is almost identical to the original, but with
an updated starting context reflecting the input of a single character. Re-
peatedly applying the derivative copies the input string into the context, and
does not even have the possibility of rejecting the input early. The derivative
of an automaton is useful if the automaton does computation as it consumes
input, and can thus reject a string purely based on a prefix.

An issue is the use of the automaton corresponding to a language — if
there exists some automaton corresponding to a language, the automaton
could be utilized directly. This is true. However, viewing automata as dif-
ferentiable may be useful when developing derivative rules for generalized

grammars; the structural similarity between the language and the automa-
ton may result in parallels between the derivative rules based on the gram-
mar and the derivative rules based on the automaton.

In practical terms, almost no commonly used formal languages are more
powerful than context-free languages, and there already exists derivative
rules allowing for computation of the derivatives of regular and context-free
languages. Natural languages may require more powerful formal languages
to be parsed; this may be a potential application of automata-based deriva-
tives.

References

[1] J. A. Brzozowski, “Derivatives of regular expressions,” Journal of the
ACM (JACM), vol. 11, no. 4, pp. 481-494, 1964.

[2] N. Chomsky, “Three models for the description of language,” IRE Trans-
actions on Information Theory, vol. 2, no. 3, pp. 113-124, 1956.

[3] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, lan-
gquages, and computation. Reading, Mass: Addison-Wesley, 1979.

[4] M. Might, D. Darais, and D. Spiewak, “Parsing with derivatives: a func-
tional pearl,” Acm sigplan notices, vol. 46, no. 9, pp. 189-195, 2011.

